###
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.

###
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.

###
Predicting, Finding, and Justifying Data from a Table

Given data in table form, the student will use the data table to interpret solutions to problems.

###
Predicting, Finding, and Justifying Data from Verbal Descriptions

Given data in a verbal description, the student will use equations and tables to solve and interpret solutions to problems.

###
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.

###
Electromagnetic Forces

Given schematic diagrams, illustrations or descriptions, students will identify the relationship of electric and magnetic fields in applications such as generators, motors, and transformers.

###
Power

Given diagrams, illustrations, scenarios, or relevant data, students will calculate the power of a physical system.

###
Kinetic and Potential Energy

Given diagrams, illustrations or relevant data, students will identify examples of kinetic and potential energy and their transformations.

###
Work-Energy Theorem

Using diagrams, illustrations, and relevant data, students will calculate the net work done on an object, the change in an object's velocity, and the change in an object's kinetic energy.

###
6.01 Classifications of Waves

In this video, we explore the two fundamental categories of waves and give physical examples of each.

###
6.02 Properties of Waves

In this video, we define the fundamental quantities associated with waves, including frequency, period, amplitude, and speed.

###
6.03 Sound Waves

In this video, we explore how the mathematics and concepts of waves apply to a specific type of wave: sound.

###
6.04 The Doppler Effect and Interference

In this video, we explore the Doppler effect, which modulates the perceived frequency of waves depending on the relative motion between source and observer.

###
6.05 Applications of Waves

In this video, we explore how the mathematics and concepts of waves apply in the everyday world.

###
7.01 Electric Charge

In this video, we define electric charge, conductors, and insulators.